
Fall 2009 Math 245 Exam 3 Solutions

Exam scores: One quarter of the exam scores were below 60, one quarter between 60 and 65 (the
median), one quarter between 65 and 70, and one quarter of the scores were above 70. This is
a significant dip as compared to the first two exams, and was predicted by a similar dip in quiz
scores. Students are urged to take incorrect quizzes as a call to action, whether or not they were
chosen to hand these quizzes in.

1. Carefully define the following terms:
This problem tests the students’ attention to detail and commitment to accurate definitions,
which are very important in mathematics. A function is a subset of A × B; the second set
B is the codomain. An injection is a function f that satisfies: for all x, y in the domain, if
x 6= y then f(x) 6= f(y). A partially ordered set is a set with a relation that is reflexive,
antisymmetric, and transitive. The l.u.b., or least upper bound, of a set is the (unique)
minimal element among all the upper bounds of that set. NOTE: the book has a typo in
this definition; as written it makes no sense. The strong pigeonhole principle states that if
n pigeons are distributed into m pigeonholes, then at least one hole receives at least d n

me
pigeons.

2. Prove or disprove the following statement. For all functions f : N → N, if f is injective then
f is surjective.
This problem tests understanding of the limitations of the injective-surjective theorem on
finite sets. Its solution is similar to many homework exercises, such as Problem 21.1. The
statement is false; a counterexample is f(n) = n + 1. This is injective [if f(n) = f(m), then
n + 1 = m + 1, so n = m], but not surjective [no element is mapped to 1].

3. Find all equivalence relations on A = {x, y}.
This problem tests the definition of equivalence relations. All equivalence relations on A are
reflexive, hence they must contain (x, x) and (y, y). Because they are symmetric, if they
contain (x, y) then they must contain (y, x) and vice versa. Hence there are two equivalence
relations: R = {(x, x), (y, y)}, S = {(x, x), (y, y), (x, y), (y, x)}.

4. Find all posets on A = {x, y}.
This problem tests the definition of posets. Like in problem 3, all posets (being reflexive)
must contain (x, x) and (y, y). Because posets are antisymmetric, if they contain (x, y)
then they must NOT contain (y, x) and vice versa. Hence there are three posets: R =
{(x, x), (y, y)}, T = {(x, x), (y, y), (x, y)}, U = {(x, x), (y, y), (y, x)}.

5. Find all functions f : A → A, for A = {x, y}.
This problem tests the definition of functions. Each function must take on exactly one value at
x, and exactly one value at y. There are two possibilities for each of these choices, hence there
are 2× 2 = 4 functions: f1 = {(x, x), (y, x)}, f2 = {(x, x), (y, y)}, f3 = {(x, y), (y, x)}, f4 =
{(x, y), (y, y)}.

6. How many relations are there on A = {x, y}? Give two examples, neither of which are equiv-
alence relations, posets, or functions.
This problem tests the definition of relation. A relation is a subset of A×A (equivalently, an el-
ement of the power set of A×A). |A×A| = 4, so there are 24 = 16 possible subsets. The previ-
ous problems found seven of these subsets (one appeared three times), so there are nine others
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to choose from. R1 = ∅, R2 = {(x, x)}, R3 = {(x, y)}, R4 = {(y, x)}, R5 = {(y, y)}, R6 =
{(x, x), (x, y)}, R7 = {(y, x), (y, y)}, R8 = {(x, x), (x, y), (y, x)}, R9 = {(y, y), (x, y), (y, x)}.

7. Solve the recurrence given by a0 = 3, a1 = −3, an = −4an−1 − 4an−2(n ≥ 2).
This problem tests solution of second-order linear recurrence relations with constant coeffi-
cients. This one has characteristic equation t2 = −4t − 4, which rearranges to (t + 2)2 = 0.
Hence t = −2 is a double root and the general solution is an = A(−2)n + Bn(−2)n. Us-
ing the initial conditions, we get 3 = a0 = A(−2)0 + B0(−2)0 = A, and −3 = a1 =
A(−2)1 + B1(−2)1 = −2A − 2B. We plug in A = 3 to find B = −1.5. Hence the solu-
tion is an = 3(−2)n − 1.5n(−2)n.

8. Prove that f : N → Z is injective, where f(n) =

{
n/2 n even
(1− n)/2 n odd

}
.

This problem tests proofs of injectivity. Suppose that f(n) = f(m). To prove injectivity, we
need to prove that n = m. There are three cases. (1) n, m are both even. Then f(n) =
n/2, f(m) = m/2, so n/2 = m/2 and n = m. (2) n, m are both odd. Then f(n) = (1 −
n)/2, f(m) = (1−m)/2, so (1−n)/2 = (1−m)/2 and again n = m. (3) m,n are of opposite
parity; without loss of generality assume n is even and m is odd. Then f(n) = n/2, f(m) =
(1−m)/2, so n/2 = (1−m)/2, n = 1−m, and m+n = 1. But m,n ∈ N, so it is not possible
for their sum to be 1, so this case never happens.

9. We define a lattice on A = R × R as follows. For x = (x1, x2), y = (y1, y2), elements of A,
we say x ≤ y if

(
x1 ≤ y1 AND x2 ≤ y2

)
. For x = (0.5, 3), y = (4, 1), find l.u.b.(x, y) and

g.l.b.(x, y).
This problem tests the definition of lattices, but mostly it tests courage in the face of a
complicated definition. Let w = (w1, w2) be the lub. Because w ≥ x, we have w1 ≥ x1 =
0.5, w2 ≥ x2 = 3. Because w ≥ y, we have w1 ≥ y1 = 4, w2 ≥ y2 = 1. Simplifying these four
inequalities we get w1 ≥ 4, w2 ≥ 3. There are many w that would work, but there is a unique
minimal w, namely (4, 3). Similarly, (0.5, 1) is the glb.

10. Find a finite-state automaton on Σ = {a, b} that recognizes those words with exactly one b
(and no other words).
This problem tests understanding of finite-state automata. Many solutions are possible,
but the simplest deterministic one is shown below. Correct non-deterministic machines also
received full credit. Some students interpreted the problem to mean an automaton that
accepts the word ‘b’ and no other words at all; although this was not my intent this is a
reasonable interpretation and these solutions also received full credit.
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